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Deep learning shows declining groundwater levels
in Germany until 2100 due to climate change
Andreas Wunsch 1✉, Tanja Liesch 1 & Stefan Broda 2

In this study we investigate how climate change will directly influence the groundwater

resources in Germany during the 21st century. We apply a machine learning groundwater

level prediction approach based on convolutional neural networks to 118 sites well distributed

over Germany to assess the groundwater level development under different RCP scenarios

(2.6, 4.5, 8.5). We consider only direct meteorological inputs, while highly uncertain

anthropogenic factors such as groundwater extractions are excluded. While less pronounced

and fewer significant trends can be found under RCP2.6 and RCP4.5, we detect significantly

declining trends of groundwater levels for most of the sites under RCP8.5, revealing a spatial

pattern of stronger decreases, especially in the northern and eastern part of Germany,

emphasizing already existing decreasing trends in these regions. We can further show an

increased variability and longer periods of low groundwater levels during the annual cycle

towards the end of the century.
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The climate crisis is increasingly altering water availability
even in generally water-rich areas like Germany, where
overall water stress is currently low1. Nevertheless, hot and

dry summers in recent years (especially 2018–2020) led to
ongoing exceptional droughts2,3 with severe consequences for
agriculture and ecology, such as drought damages in forests,
reduced crop yields, and extreme low flows in rivers. Drought
effects accumulated over the years, because winter precipitation
did not compensate for summer deficits. This applies not only but
especially to groundwater resources, which constitute the major
source of drinking water supply in Germany (almost 70%)4.
Declining groundwater levels due to generally reduced ground-
water recharge and higher water demand in summer regionally
forced water suppliers to exploit their current maximum capacity
during dry periods to meet the demand; locally, even water supply
shortages occurred. During future dry periods, strong usage
conflicts can be expected in areas of low water availability
between water suppliers and industry (process and cooling
water), additionally amplified by increasing agricultural irrigation
demand, which currently has only minor significance with less
than 2% of the total withdrawal volume1. Knowledge of future
groundwater level development, especially in the long-term, is,
therefore, crucial to develop sustainable groundwater manage-
ment plans to meet future demands, solve usage conflicts and
protect ecosystems.

Climate change affects groundwater in several direct and
indirect ways5. Major direct drivers are changes in precipitation,
snowmelt, and evapotranspiration6. Different representative
concentration pathways (RCP) describe possible future climate
scenarios. The current situation best matches RCP8.5, often
described as a business-as-usual scenario with increasing green-
house gas emissions. Despite existing mitigation efforts, this
scenario might be the most plausible one for the near future7.
RCP 2.6, a stringent mitigation scenario with an average global
warming below 2 °C above pre-industrial temperatures, might be
hard to reach at all, and even the intermediate RCP4.5 is still
more ambitious than current (as of 2021) nationally determined
contributions under the Paris Agreement, according to UN-
FCCC8. Their analyses estimate global warming of approximately
2.7 °C compared to pre-industrial temperatures. For Germany,
analyses based on climate projections show opposing trends in
terms of water availability. With some differences between drier
and wetter models they find a slight increase in annual pre-
cipitation sums, i.e., generally more water, but at the same time
with high agreement between models a significant temperature
increase of several degrees Celsius by 21009–11, i.e., less water. The
resulting effect on groundwater resources is therefore not directly
clear and needs to be analyzed. Higher precipitation is generally
expected during winter, which in combination with a decreasing
amount of snow, thus increasing direct infiltration, leads to
higher groundwater recharge during winter and less in spring. For
the few snow-dominated regions in Germany (e.g., in the South)
this might cause changes in seasonality6, however, overall this
plays a minor role. Weather extremes are expected to intensify;
therefore, longer droughts and more frequent intense rainfall
events will occur5. Generally, higher temperatures cause higher
atmospheric water demand, thus increasing evapotranspiration,
which leads to less infiltration and, therefore, less groundwater
recharge. Especially unconfined, shallow aquifers are most likely
to be sensitive to direct climate change effects12. Indirect climate
change influences on groundwater are mostly related to anthro-
pogenic groundwater withdrawals or associated with land-use
changes5. It is known that the groundwater storage reduction
caused by pumping could easily far exceed natural recharge6,13.
The impact of these factors will be exacerbated as water demand
increases to as well meet the needs of a regionally growing

population (mainly due to growing urban areas), as of industry
and agricultural irrigation. To date, there are no reliable data
available that estimate the future development of such factors
under different climate change scenarios.

In recent years, artificial neural network (ANN) approaches
have proven their usefulness in predicting groundwater
levels14–19, even using a highly transferable approach with purely
climatic input variables (e.g., ref. 14). In a previous study14, we
showed that 1D-convolutional neural networks (CNNs) are a
good choice for groundwater level simulation because they mostly
outperform even long short-term memory (LSTM) models in
terms of accuracy and calculation speed, as well as they showed
considerably higher flexibility and modeling stability compared to
NARX models (nonlinear autoregressive models with exogenous
inputs). Therefore, they are therefore an accurate, fast, and reli-
able method of choice for this study. Unlike physically-based
models, which usually require a very good knowledge of local
conditions and need to be time-consumingly built and calibrated,
data-driven models such as ANNs can predict a target variable
using only relevant driving forces. This makes studies on larger
areas easier and is, therefore, the favored approach for this study.
To the authors’ knowledge, no comprehensive direct evaluation of
groundwater level development until 2100 exists for Germany yet.
Besides a rather old small-scale study20 also a regional-scale study
for the Danube basin has been conducted to date21. The latter
uses several dynamically coupled, process-based model compo-
nents and the authors found strongly declining groundwater
levels with declines of up to 10 m close to the Alps in south-
ernmost Germany for their scenario period (2036–2060). Further,
several studies investigated future groundwater recharge in dif-
ferent contexts for smaller subregions of Germany using mainly
water balance models or process-based models21–26. The appli-
cation of ANNs to study groundwater level development in the
long-term and in the context of climate change for a larger area
like Germany has not been performed yet. Related studies with
applications of ANNs either used a very small number of
wells27–29 and limited time horizons27,28 or use ANNs without
directly presenting future climate signals to the ANN29. In the
case of streamflow runoff simulation, however, ANNs have been
successfully applied to analyze the future development under
climate change influences in several catchments all over
California30 as well as in two catchments in China31,32.

In this study, we use a 1D-CNN approach14 to build 118 site-
specific models, well distributed over Germany in the respective
uppermost unconfined aquifer, which are able to predict weekly
groundwater levels with high accuracy using only precipitation
and temperature as inputs in the past. We visually check the
model output plausibility under an artificial extreme climate
scenario in the past30 and investigate how the model has learned
input–output relationships using an explainable AI approach
(SHAP33). We then use the trained CNN models to investigate
the future climate-driven groundwater level development for the
selected sites, using precipitation and temperature derived from
different RCP scenarios (2.6, 4.5, 8.5)34 of bias-corrected and
downscaled (5 × 5 km2) climate projection data35 from different
climate models. These models (“core-ensemble”) were preselected
by the German Meteorological Service (DWD) to represent
80–90% of the spread of the full ensemble of all available and
suitable (according to certain quality criteria) climate projection
results under the respective RCP scenario for Germany36 based
on CORDEX-EUR1137 and ReKliEs-De38 (see Methods section).
As we use purely climatic input variables we can only project the
influence of direct climate change effects, while secondary, most
certainly stronger indirect effects, such as increased groundwater
pumping, are not included in this study. However, due to high
prediction accuracy in the past, the selected sites show a strong
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relationship between climate variables and groundwater and are
unlikely to be under the influence of strong groundwater with-
drawals or comparable effects. They are, therefore, suitable for
predicting that part of the future groundwater level trend that
results from direct climatic influences, as long as the basic
input–output relationships remain unchanged.

Results
Individual projection results. For each of the examined 118 test
sites, we simulated the future weekly groundwater level devel-
opment based on 5–6 climate projections per RCP scenario. Since
these climate projections differ considerably in detail for indivi-
dual future time periods, we also obtained several different future
groundwater level simulations per scenario and considered site,
which should only be interpreted based on longer time periods (at
least 30 years)39, such as with a linear trend analysis performed
here, considering the whole time period of more than 80 years.
Figure 1 depicts the results of our analysis for RCP8.5, in terms of
the relative change in % between the start (2014) and the end of
the simulation period (2100) for each of the six projections under
RCP8.5 for (a) the annual mean, (b) the annual upper extreme
(97.5%) quantile, and (c) the annual lower extreme (2.5%)
quantile. For each site, all displayed developments are ordered by
the strength of the change, which does not necessarily correspond
to the numbering of the projections (Table 1). The given boxplots
in Fig. 1d provide more detailed information on the three maps,
as well as confidence intervals on the statistical analysis. The
values of the non-significant trends are not shown in the box-
plots, which has to be kept in mind for interpretation. For
detailed numbers on the boxplots, we refer to Supplementary
Table S3.

In the case of the annual mean, approximately 47% of all
simulations (332 of 708, i.e., six projections for each site) show a
significant trend until 2100. There is always at least one result for
each site significant (p < 0.05), which, however, also means that
there are several sites with mainly non-significfant trends (gray).
The large majority of the significant trends are negative with a
median ranging between −18% (p1) and −6% (p6). Note that the
uncertainty (shown by the boxplots in Fig. 1d) can be quite high
from the trend analysis alone and we further see that the lower
bound sometimes shows a larger spread, thus a higher
uncertainty, than the upper bound. In Fig. 1d we also observe
that p1 systematically shows the strongest declines until 2100,
which is significant for 114 of the 118 wells. The overall
maximum decline of the annual mean is -35%, clearly indicating
the different character of p1 compared to the other projections.
Especially p3–p5 show more moderate changes of the mean
(median ranges from −8% to −11%), with many non-significant
trends (50–58%). Simulations based on p2 and p6 only find
significant trends for 22% and 29% of all sites respectively and
additionally are moderate in their significant results. Three
projections (p2, p3, but mainly p6) even show some positive
trends until 2100, however, overall, these are rare and occur at
sites, where other projections simultaneously show at least non-
significant or even negative trends. In absolute numbers, the
median changes are in the order of −0.1 m to −0.3 m, which is
highly dependent on the individual groundwater level range at
each site. Despite many non-significant and some positive trends,
there is a clear tendency of declining mean groundwater levels
until 2100. Additionally, we can observe a slight spatial tendency
with more and stronger significant negative trends in some areas
of northern and eastern Germany, where we also find the
strongest overall relative declines. In southern Germany, many
wells show multiple non-significant trends, and most of the
positive changes are also scattered in this region; however, some

of the southernmost wells also show some very strong decreases
for single simulations.

The results for the upper extreme value quantile (97.5%)
confirm these spatial patterns partly. In Fig. 1b we clearly observe
many significant declines in eastern Germany, while the large
majority (76%) of the trends in whole Germany is considered to
be non-significant. Increasing trends are found comparably often,
with increases close to 18% (p1, p3, p6). Comparing the
projections (Fig. 1d), we find a similar behavior as before:
p1 shows the strongest significant decreases (down to −40%,
conf. -interval: −61% to −19%), p3–p5 tend to move in the
moderate negative range (medians around −11%), while p2 and
p6 more often show positive trends (positive medians of the
significant trends). Particularly the latter causes a partly contra-
dictory development of the upper extreme values compared to the
mean. The absolute numbers of changes are again in the order of
a few tens of centimeters.

The tendency of declining groundwater levels we observed for
the mean, gets clearer for the lower extreme values (2.5%
quantile) shown in Fig. 1c. We still observe 38% non-significant
trends, however the remaining 62% show almost exclusively
negative changes with a maximum decline of -79%. The median
change of the 2.5% quantile of all projections ranges between
−34% for p1, which again shows the strongest declines, followed
by p4 (−19%), as well as p2, p3, p5, and p6 with a median change
around −9% to −12% each (lower bound: −20%, upper bound:
−2%). The latter four, and especially of them p6, contain the
majority of non-significant trends, the changes shown in the
boxplots, therefore, tend to be overestimated. There are only a few
sites where only one result is considered significant. These occur,
for example, near the Baltic Sea coast as well as the central and
eastern part of northern Germany. Quite strong relative decreases
are visible in eastern Germany and in the western part of
northern Germany as well as at the southernmost sites. This
pattern is largely consistent with the spatial pattern of the mean
mentioned above. When translating into absolute units, most
median decreases (p2–p6) are in the order of −0.1 m to −0.4 m.
For p1 and when considering the annual lower extreme value
quantile, the median decrease reaches even −0.6 m. From all
projections except p6 we see that of all significant changes for the
2.5% quantile, at least a decrease of −0.1 m is observed
(summarized in Supplementary Table S3).

The spatial patterns in Fig. 1a–c are particularly interesting
because they do not intuitively follow from the patterns of the
input data (compare Figs. S7 and S8). Considering all results of
RCP8.5, we see a clear tendency toward declining groundwater
levels overall, with stronger declines for lower quantiles, i.e.,
groundwater level lows will occur more frequently and will be
more severe in the future. At the same time, except for East
Germany, mostly no or even increasing trends are found for
upper extreme values, which means that the overall variability
will increase considerably by the end of the century.

Figure 2 summarizes the results for the other considered RCP
scenarios 2.6 and 4.5. For the former, which is a stringent
mitigation scenario in terms of greenhouse gas emissions, we see
that generally, the number of significant samples (p < 0.05) in
total is low, with only 6–8%, depending on the quantile
considered. We generally see smaller decreases compared to
RCP8.5; the upper extreme value quantile does no longer show
considerable positive changes. Supplementary Fig. S1 shows the
spatial distribution of the found changes. We can detect no spatial
pattern for the 2.5% quantile, but (slight) decreases all over
Germany, dominated by mostly non-significant results. The mean
and the 97.5% quantile, however, show that decreasing changes
occur preferably in northern Germany, whereas the southern part
either shows few slight decreases for the mean or remains mostly
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non-significant for the upper extreme values. The results strongly
indicate that the reduced greenhouse gas emissions of the
RCP2.6 scenario also translate to a distinctly reduced impact on
the groundwater level development, especially compared to the
opposite RCP8.5 scenario. Nevertheless, decreasing trends are still

visible all over Germany, showing that even for RCP2.6 with
limited global warming below 2 °C compared to pre-industrial
temperatures, a change in water availability is to be expected.

For RCP4.5 changes are also only rarely significant (Q97.5: 6%,
mean: 7%, Q2.5: 13% of all samples). Projection p6 represents

Fig. 1 Groundwater level changes (RCP8.5). Change of groundwater levels [%] in 2100 relative to 2014 (start of sim.) for each site and each climate
projection, based on linear trend analysis: a mean, b 97.5% quantile, c 2.5% quantile; the order corresponds to the strength and sign of the change.
d Boxplots showing the significant changes for a–c, light gray/sideways boxplots show the uncertainty of the change as 95% confidence interval. The
numbers above boxplots depict the sample size (significant trends). Black boxes on maps depict the sites shown in Fig. 3.
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definitely an increasing groundwater scenario for the future,
whereas p1–p5 mostly show decreases for the significant changes.
Except for p6, we, therefore, see median changes of all three
annual quantiles between −5% and −10%. RCP4.5 and RCP2.6
do not differ here very strongly, but the number of significant
samples is a bit higher for RCP4.5 as well as the confidence
intervals are shown in Fig. 2 are slightly narrower than in RCP2.6.
Differences get clearer spatially, where we find more distinct
patterns in the case of RCP4.5 (Supplementary Fig. S2) with
increasing values almost exclusively in southern Germany (97.5%
quantile, less frequent also for the mean). This clearly coincides
with the spatial pattern of increasing precipitation in the input
data (Supplementary Figs. S5 and S6). While decreasing changes
can be found in northern Germany for the 2.5% quantile, this is
less pronounced for the annual mean and even lesser for the
97.5% quantile. For both, sites with exclusively non-significant
changes increasingly dominate. For both, RCP2.6 and 4.5, we do
not find the strong decreasing trends in eastern Germany seen for
RCP8.5, however, both scenarios indicate a stronger tendency of
decreasing trends in the North, a slightly increasing tendency of
upper extreme values for the South, as well as an increasing
overall variability (decreasing lower quantiles, constant or
increasing upper quantiles) are possible. While for RCP2.6 we
do not see that the lower extreme values decrease stronger than
other parts of the hydrographs as under RCP8.5, this pattern
emerges under RCP4.5 in agreement. Overall, due to the high
number of non-significant results, RCP2.6 and RCP4.5 results
should be interpreted carefully. Maps, as well as detailed numbers
on the boxplots in Fig. 2, are part of the electronic supplement
(Figs. S1 and S2, Tables S4 and S5).

Figure 3 shows exemplarily the detailed development at two
arbitrarily selected sites (black boxes in Fig. 1) under RCPs 4.5
and 8.5, which, as explained, are the most relevant given the
current situation. The simulation results are depicted as time

series plots for the far future (2071–2100), and as heatmaps with
years as rows and weeks as columns for each of the projections.
Heatmaps of both scenarios share the same color scale per site.
Heatmaps and time series plots of the simulation results of all
other sites and for all RCPs are available online (ref. 40). The time
series plots show the diverging development of some projections
in the far future, however, there is no strict sequence of
projections in terms of absolute groundwater height, the order
can change throughout the years. Most heatmaps visualize the
development described above by displaying generally declining
groundwater levels (more and darker red, as well as lighter or
constant blue shadings toward 2100 in the lower part of the
heatmaps). Moreover, we observe increasing lengths of periods
with low groundwater levels (wider red shadings) throughout the
year. In accordance, wet periods usually get shorter (narrower
blue shadings) or even change to red (e.g., in b, RCP8.5, p1, p3,
p4). The absolute height of groundwater levels during wet periods
does not necessarily decrease but can even show the opposite
behavior (darker blue, e.g., in a, RCP8.5, p6). Most importantly,
in both scenarios and at both sites, we can also recognize
successions of several dry years. Such periods are visible in the
time series plots, but more clearly as dark red horizontal stripes in
the heat maps. These are especially critical because drought
effects accumulate and dependent ecosystems cannot recover but
are instead particularly vulnerable to further damage in
subsequent years due to reduced resilience. Although the results
should not be interpreted over shorter periods of time (i.e., they
do not reflect the absolute timing of an event), they definitely
show the increasing probability of such longer-term droughts in
the future, especially in the second half of the century.

Average projection results under RCP8.5. In Fig. 4, we con-
solidated the separate projection results under RCP8.5 for each
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site into one, by calculating the mean of the significant trends
shown in Fig. 1. Only sites with at least four (thus the majority)
significant projection results are included, the rest is depicted as
not significant on average. This is one reason for neglecting RCPs
2.6 and 4.5 in this analysis step, as barely sites with four or more

significant results were found there. Another reason is that, at
least for the near-future, the results of RCP8.5 can be considered
most relevant, as it is the scenario closest to our current
situation7. Even though we investigate a longer time period until
2100, tendencies should be nevertheless useful to estimate near-
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Fig. 3 Heatmap plots and far future groundwater levels. RCP4.5 and RCP8.5 results for two arbitrarily selected sites marked by black boxes in Fig. 1
(a NW_100140142, b ST_31340028). Heatmap plots show the whole simulation period for each of the projections under each of the considered scenarios.
Columns of each plot as weeks during the year and rows as the year (top: 2014—bottom: 2100).
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future developments. The development of the mean is depicted in
the upper left map (a) and according to the aforementioned
definition, about 30% of the wells (35 of 118) are considered
significant on average, and on median show a change of −12%.
We do not find any wells with increasing mean trends on average
and observe a similar spatial pattern as before with the strongest
decreases in eastern Germany. For wells in southwestern Ger-
many, we observe a noticeable number of non-significant

changes. Overall, we simulated significant absolute average
decreases between −0.2 m and −2.1 m for about 18 wells, and at
least a decrease of −9 cm for all 35 wells in Fig. 4a. In the case of
the annual 97.5% quantile, the consolidated results show mainly
no trends, especially for southern Germany. Two sites in northern
Germany are expected to show increased upper extreme values up
to a maximum of 7.5% or 0.2 m, however, we still observe a
spatial pattern of decreasing upper extreme values in eastern

Fig. 4 Average Changes (RCP8.5). Averages for all sites of the significant trends (at least four) of the a annual mean, b the annual 97.5%, and c the annual
2.5% quantiles shown also in Fig. 1. d Associated boxplots and e the corresponding table.
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Germany up to −24%. Hence, in this area, the groundwater levels
possibly decrease in every part of the annual cycle and with
comparably high certainty (many consistent significant simula-
tions). This also applies to the lower extreme values (2.5%
quantile) that show on average significant decreases for more
than half of the examined sites, with median decreases of −17%
(or −0.3 m) (compare Fig. 4d, e). On this map, no clear spatial
pattern is recognizable any longer.

Model input analysis. From the combined analysis of our
groundwater level simulations, especially under RCP8.5, and the
model inputs presented in the data section and Supplementary
Figs. S3–S8, we conclude that for shallow aquifers temperature is
the main driving factor for declining groundwater levels, rather
than precipitation. This applies because mostly non-significantly
changing or even increased precipitation is projected, however,
our models still frequently show declining groundwater level
tendencies. Therefore, these are most likely caused by the sig-
nificantly increased temperature until the end of the century.
Nevertheless, especially under RCP4.5, spatial precipitation data
patterns from the input data translate into related patterns of
groundwater levels, which shows the also high importance of
precipitation. Our results are consistent with other studies, which
indicate that the reduction in water availability in the future is
driven primarily by changes in temperature9. This is also reflected
in the results of the model interpretability approach (SHAP33

values) that we used to check the plausibility of our model out-
puts. The minimum SHAP value for T is mostly lower than the
minimum SHAP value observed for P (except for eight sites); i.e.,
the models have learned that high temperatures can cause
stronger decreasing groundwater levels than low precipitation.
This is, however, only an interpretation of what was learned,
which agrees with our conception. Causality cannot be derived
from this.

Sources of uncertainty. There are different sources of uncertainty
in our study. Considering the groundwater model itself there
exists uncertainty directly from different model realizations as
well as the uncertainty due to limited model precision. The for-
mer was derived from a Monte-Carlo dropout approach and is on
average consistently small for all models (orange sections Fig. 8a
and Supplementary Figs. S9–S126), the latter is hard to generalize,
as it is different for each site. However, we only used models with
high performance in the past, checked the conceptual correctness
of what was learned using SHAP values, and investigated the
stability of the model output in the extrapolating regime, to
improve the confidence in the model simulations. However, it is
important to mention that data-driven models generally have
difficulties in predicting extreme values. Figure 5 shows the yearly
relative model bias on different quantiles during the model testing
period (2012–2015, normalized on the historic min–max range of
each individual time series). On average the models show a very
small bias, however, a considerable bias occurs for extreme values
(2.5% and 97.5% quantiles). Lower extremes are overestimated by
4.8%, upper extremes are underestimated by 9.6% (both on
median). Thus, the analyses of future extreme values are less
robust than for the mean. Nevertheless, we argue that (i) rea-
sonable conclusions can still be derived from relative trends and
tendencies even for the extreme values at each site and (ii) since
the extreme values are underestimated, the analyses constitute a
kind of best-case scenario.

Concerning the simulation of climate change impact, we are
not extrapolating in a classical sense, because mean values and
frequencies of input values change in the future, but the total
range of these values is usually already present in the training

data. Scaling uncertainty due to the differences between a single
location and the grid cell sizes are certainly present, however, by
achieving high performance in the past using training data in the
same grid resolution we can assume that this influence is not
severe. To account for atmospheric process scales in the climate
models that are not reliably scaling down to cell resolution, we
follow the DWD best practice recommendation of considering
3 × 3 cells rather than one cell that best matches the site location.
Regarding the uncertainty deriving from climate models or the
considered scenario themselves, we consider different RCP
scenarios each based on a whole ensemble of individual climate
models. Finally, the uncertainty from the applied statistical tests
(Mann–Kendall test and Theil–Sen slopes) is directly commu-
nicated in the text and figures.

Discussion
The results of our simulations show a nationwide decrease in
climate-driven groundwater levels by the end of the century
under the RCP8.5 scenario. The results for RCP2.6 and
RCP4.5 show comparably few significant changes, thus having to
be interpreted with care in absolute and relative numbers.
However, this also means that mitigation of greenhouse gas
emissions could have a visible effect, at least for the climate-
driven part of the total future groundwater levels in Germany.
Nevertheless, even for RCP2.6, decreases in all considered
quantiles were found all over Germany for some projections. We,
therefore, will probably have to cope with drought effects and
changing water availability in any of the investigated scenarios,
especially because current estimations of future climate change
impacts8 still exceed the RCP4.5 scenario. Especially for the near
future, the results under RCP8.5 are most relevant7, because its
path is closest to our current situation.

The absolute changes even under RCP8.5 may seem small, but
the facts that we investigated almost exclusively shallow aquifers
and sites with comparably small depths to groundwater reinforces
the importance of the results, predominantly in terms of water
availability for vegetation and agriculture. A decline of several
tens of centimeters (depending on the projection and the area)
can be vital for plants during hot and dry periods, if, as a result,
the groundwater is no longer accessible. Furthermore, a related
study showed, that for large parts of northern Germany, a decline
of the groundwater levels by 10 cm can be considered critical in
terms of altered streamflow discharge due to reduced baseflow
from groundwater13. This has already been visible during the
summers of 2018–2020, when simultaneously to low groundwater
levels, also extremely low water levels in surface waters were
observed3. Our results show a clearer tendency of declining
groundwater levels in the North and the East compared to the
South (Fig. 4a), which emphasizes the already existing trends and
patterns. However, in the southernmost part of Germany, for
some individual projections, we also find some of the strongest
declines (Fig. 1). It is very important to note that the assessed
results are only long-term averages of future development. As

Fig. 5 Model Bias. Evaluation of the yearly, relative model bias on different
yearly quantiles at all sites for the 4-year model testing period.
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recent developments illustrate, the succession of several dry years
is much more critical than the overall trend. In such periods, the
projected effects accumulate over consecutive years to extremely
low groundwater levels, and thus more severe consequences are to
be expected. Such longer dry periods are most likely to be aver-
aged out in linear trend analysis, as performed in this study.
Nevertheless, we see an increasing frequency of them in all RCP
scenarios40, especially in RCP8.5 and less pronounced in RCP4.5
(Fig. 3). Future research should pay attention to this aspect more
intensively. It is also important to highlight that we only model
direct climate effects on groundwater levels, and we assume that
the basic input–output relationship or system behavior does not
change. However, it can most certainly be expected that the
system behavior will be influenced by future changes in
groundwater extractions, changes in vegetation and land use, as
well as surface sealing and other related factors. Groundwater
withdrawals, in particular, are expected to increase due to (i) the
regionally growing population especially in metropolitan areas
(drinking water demand) and (ii) the increasing demand for the
industry, energy, and especially irrigated agriculture. As a result,
the groundwater level will inevitably drop further, if no active
measures such as limitation of withdrawals, avoidance of irrigated
agriculture by changing crop types, or even artificial recharge by
infiltration, are applied. Despite all these limitations, the results
give a good impression of the magnitude of changes to be
expected purely due to direct climatic influences.

Methods
Data. We used weekly groundwater level data from 118 different sites, well dis-
tributed all over Germany (Fig. 6a). All wells are located in the unconfined,
uppermost (thus mostly shallow) aquifers, which are most likely to be subject to
direct climate change effects12. Greater depths to groundwater are predominantly
found in fractured and karstic aquifers. For additional details on the sites please

refer to the supplementary material (Supplementary Table S1). Groundwater level
records of all sites show very different lengths (Fig. 6b), from 15 to 67 years, with a
median length of 36 years. Data gaps were closed using the information of several
related groundwater level time series with highly correlated dynamics derived from
an earlier comprehensive cluster analysis based on hydrograph dynamics41,42.
Alternatively, PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) was
used to close smaller data gaps, where no correlated hydrograph information was
available. In our dataset, 48 time series had no missing values; another 44 had less
than 2% interpolated values. Only very few time series show a higher proportion of
interpolated values (11 time series > 4%). More information on interpolated values
can be found online in the released dataset.

Input variables for our models are precipitation (P) and temperature (T), thus
purely climatic. These variables are widely available and easy to measure both in
the past and present, and are also well evaluated in terms of climate projection
output. Precipitation serves as a proxy for groundwater recharge, temperature for
evapotranspiration. Additionally, the temperature usually shows a distinct annual
cycle, which also provides the models with valuable information on seasonality.
Since we specifically selected wells with high forecast accuracy in the past (see
“Model calibration and evaluation”), we can assume that the groundwater dynamic
at these wells is mainly dominated by climate forcings. As long as no fundamental
change of the system relations occurs (e.g., newly installed groundwater pumping
or severe changes in land use nearby), we can expect reasonable results for our
simulations, as we explore only the influence of changing climate and assume other
boundary conditions fixed.

Besides the groundwater level data itself, we based our analysis on several
datasets. The models were trained using temperature and precipitation data from
the HYRAS dataset43,44, which is a gridded (5 × 5 km2) meteorological dataset
based on observed data from meteorological stations ranging from 1951 to 2015.
To evaluate the influence of climate change we used RCP scenario data from
several selected climate projections that form the so-called core ensemble defined
by DWD36 (Table 1). Depending on the scenario and the considered variable, this
ensemble represents 80–90% of the ensemble spread of the possible climate signal
within the larger ‘reference-ensemble’36. The latter, in turn, constitutes all available
and quality-assessed projections for Germany. Further, we received the projection
data bias-adjusted onto the HYRAS dataset and regionalized it on a 5 × 5 km2 grid
by ref. 35. For each site, the mean of 3 × 3 cells around the cell with the respective
well was chosen as input for the simulations, following the best practices by DWD
to reduce uncertainty resulting from the grid cell size.

Generally, the used climate projections show a slight increase in precipitation sums
and a significant temperature increase of several degrees Celsius for Germany by

Fig. 6 Overview map and data availability. a Position, type of aquifer, and depth to groundwater for each study site. b Time series length of all study sites
ordered in North–South direction.
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210011,37,38, more precise values depending strongly on the considered scenario. For
RCP8.5, an input data analysis at the relevant 118 sites of this study showed a
consistent annual average temperature increase in all regions of Germany of several
degrees Celsius (mostly between 3 and 4 °C). Only very slight spatial patterns emerge,
with strongest increases in the South (up to 4.7 °C) and generally slighter increases in
the Northwest, probably due to a buffer effect near the coast. For the total annual
precipitation, non-significant changes (p > 0.05) dominate. The fewer significant
changes partly show opposing trends, depending on the projection. One projection
shows consistent decreases of mostly −150mm (max: −367 mm in the far South).
Some other projections show increasing precipitation instead (mostly around 100mm)
except for the Northwest, where almost no increases are visible. The southern part
shows the strongest possible increases in precipitation, up to 300mm. Under RCP4.5
the respective input data reveals no spatial pattern in the case of the temperature. Input
data shows spatially consistent increases mostly between 1 °C and 2 °C. For the
precipitation data, non-significant results dominate. However, the few significant
increases show a clear spatial pattern and occur mostly in the South and Northwest,
ranging mostly around 100mm; in the eastern part, we see basically no increasing
precipitation. Under RCP2.6 non-significant results are dominating. In terms of the
temperature data, however, we find a spatial pattern of slight, yet significant increases
(0.5–0.8 °C) in the North and Northeast, as well as for the upper Rhine graben area in
the Southwest. For the precipitation only a few significant results occur, showing
decreases of about −100mm, mostly in the Northwest. For map and boxplot
representations of these analyses, please refer to the Supplementary Figs. S3–S8.

Convolutional neural networks (CNNs). CNNs45 are commonly used for image
recognition and classification tasks but also work well on sequential data, such as
groundwater level time series14. The CNNs used in this study comprise a 1D-
convolutional layer with fixed kernel size (three) and optimized number of filters,
followed by a Max-Pooling layer and a Monte-Carlo dropout layer, applying a fixed
dropout of 50% to prevent the model from overfitting. This dropout rate is quite
high and forces the model to perform very robust training. A dense layer with an
optimized number of neurons follows, succeeded by a single output neuron. We
used the Adam optimizer for a maximum of 100 training epochs with an initial
learning rate of 0.001 and applied gradient clipping to prevent exploding gradients.
Early stopping with patience of 15 epochs was applied as another regularization
technique to prevent the model from overfitting the training data. Several model
hyperparameters (HP) were optimized using Bayesian optimization46: training
batch-size (16–256); input sequence length (1–52 weeks); the number of filters in
the 1D-Conv layer (1–256); the size of the first dense layer (1–256). All models
were implemented using Python 3.847, the deep-learning framework TensorFlow48,
and its Keras49 API. Further, the following libraries were used: Numpy50,
Pandas51,52, Scikit-Learn53, BayesOpt46, Matplotlib54, Unumpy55, and SHAP33.

Model calibration and evaluation. We used weekly groundwater level time series
data of varying lengths (Fig. 6b). To find the best model configuration, we split every
time series into four parts: training set, validation set, optimization set, and test set. The
test set uses always the 4-year period from 2012 to 2016 (Fig. 7b, s.a. Figure 8a for an
example, for a few sites where the time series ended slightly earlier, we shifted the
4-year test set period accordingly). The first 80% of the remaining time series before
2012 were used for training, the following 20% for early stopping (validation set) and

for testing during HP optimization (optimization set), using 10% of the remaining time
series each (Fig. 7b). As target function during HP optimization, we chose the sum of
Nash–Sutcliffe efficiency (NSE) and squared Pearson r (R2) (compare ref. 14), the
acquisition function is expected improvement. For each model, we used a maximum
optimization step number of 150 or stopped after 15 steps without improvement once
a minimum of 60 steps was reached. Generally, we scaled the data to [−1,1] and used
an ensemble of ten pseudo-randomly initialized models to reduce the dependency
towards the random number generator seed. For each of the ten ensemble members,
we applied Monte-Carlo dropout during simulation to estimate the model uncertainty
from 100 realizations each. We derived the 95% confidence interval from these 100
realizations by using 1.96 times the standard deviation of the resulting distribution for
each time step. Each uncertainty was propagated while calculating the overall ensemble
median value for final evaluation in the test set (2012–2016). We calculated several
metrics to judge the simulation accuracy: NSE, squared Pearson r (R2), absolute and
relative root mean squared error (RMSE/rRMSE), as well as absolute and relative Bias
(Bias/rBias). Note that we calculate NSE with a long-term mean GWL before the test
set instead of the test set mean value. Please see ref. 14 for more details on calculation as
the same approach was used. We use almost exclusively wells, at which the models
showed a very high forecast accuracy in the test-set (mostly NSE and R2 larger than
0.8, compare to Fig. 7a). Some models were included with slightly lower accuracy (at
least NSE and R2 larger than 0.7) to improve the spatial coverage resulting in a set of
118-wells from all over Germany. For additional details on the error measures and HP
for all sites please refer to our Supplementary material. Figure 8a shows the model
evaluation on the test set exemplarily for one well.

Model plausibility and interpretability. To perform groundwater level simula-
tions until 2100 we retrained all models using the defined HP and all data until
2014. Hence, we split the time series only into two parts: 80% for training and 20%
for early stopping (Fig. 7b). Afterward, we assessed the model stability and the
plausibility of the output values in the extrapolated regime accordingly to ref. 30 by
evaluating the model output using artificially altered input data based on historical
observed climatology with quadruple precipitation and systematically 5 °C higher
temperature (Fig. 8b). As long as the model output does not “blow up” or produce
meaningless outputs30, we can hereby improve confidence in the simulation results
when investigating the different RCP scenarios. Models showing implausible
behavior in preliminary analyses were not considered for this study. We addi-
tionally applied an explainable AI approach to check whether the models have
learned correctly in terms of our conceptual understanding of hydrogeological
processes. We calculated SHAP33 values that explain the influence (sign and
strength) of every input feature value on the model output (Fig. 8c). Generally, our
models showed that the relationship between input and output was captured
plausibly. For example, high precipitation inputs (P, red) produce high SHAP
values and therefore have a strong positive influence on the model output, which
corresponds to our basic understanding of the influence of recharge, leading to
increasing groundwater levels. Low or no precipitation (P, blue) has a comparably
slight negative influence on GWL, whereas high-temperature inputs (T, red) have a
strong negative influence on the model output. Again, this corresponds with our
basic understanding of the governing processes, where the high temperature
usually means high evapotranspiration, which causes less recharge or even direct
groundwater evaporation in some cases. This sounds trivial, however, during

Table 1 Climate projections overview.

Scenario Projections Abbrev.

RCP8.5 CCCma-CanESM2_rcp85_r1i1p1_CLMcom-CCLM4-8-17 p1
ICHEC-EC-EARTH_rcp85_r1i1p1_KNMI-RACMO22E p2
MIROC-MIROC5_rcp85_r1i1p1_GERICS-REMO2015 p3
MOHC-HadGEM2-ES_rcp85_r1i1p1_CLMcom-CCLM4-8-17 p4
MPI-M-MPI-ESM-LR_rcp85_r1i1p1_UHOH-WRF361H p5
MPI-M-MPI-ESM-LR_rcp85_r2i1p1_MPI-CSC-REMO2009_v1 p6

RCP4.5 ICHEC-EC-EARTH_rcp45_r1i1p1_KNMI-RACMO22E_v1 p1
ICHEC-EC-EARTH_rcp45_r12i1p1_KNMI-RACMO22E_v1 p2
ICHEC-EC-EARTH_rcp45_r12i1p1_SMHI-RCA4_v1 p3
MOHC-HadGEM2-ES_rcp45_r1i1p1_CLMcom-CCLM4-8-17_v1 p4
MPI-M-MPI-ESM-LR_rcp45_r1i1p1_MPI-CSC-REMO2009_v1 p5
MPI-M-MPI-ESM-LR_rcp45_r2i1p1_MPI-CSC-REMO2009_v1 p6

RCP2.6 ICHEC-EC-EARTH_rcp26_r12i1p1_CLMcom-CCLM4-8-17_v1 p1
ICHEC-EC-EARTH_rcp26_r12i1p1_KNMI-RACMO22E_v1 p2
MIROC-MIROC5_rcp26_r1i1p1_CLMcom-CCLM4-8-17_v1 p3
MOHC-HadGEM2-ES_rcp26_r1i1p1_KNMI-RACMO22E_v2 p4
MPI-M-MPI-ESM-LR_rcp26_r2i1p1_MPI-CSC-REMO2009_v1 p5

For more information on the models please visit https://www.euro-cordex.net/.
Climate projections used in this study and according to abbreviations used throughout the text.
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preliminary work for this study, we found that not all models captured these
relations correctly, which also partly caused erroneous values in the extrapolated
regime (see above). Such models were excluded from the final study. Figure 8
exemplarily summarizes the model evaluation (a) and plausibility checks (b, c) for
one well. Respective figures of all other sites are provided in the supplement
(Supplementary Figs. S9–S126).

Evaluation of the projected groundwater levels. For our simulation results until
2100, we examined the relative development of the mean as well as the 2.5% (lower
extreme), and 97.5% (upper extreme) quantile. All were site-specifically calculated

on a yearly basis for each individual projection followed by a linear trend analysis
based on Mann–Kendall, and Theil–Sen slope. In doing so, we are able to capture
both the range and the individual development of all considered future climate
projections. Even though considering yearly values, we applied the 3PW pre-
whitening method56 (implemented in the Mann–Kendall/Python57 package) to
eliminate the remaining first-order autocorrelation before applying Mann–Kendall
test and calculating corresponding Theil–Sen slopes. To make comparisons
between different sites possible, results are normalized on the individual range of
each historic groundwater level time series between the years 2000 and 2014 (start
of simulation due to data availability). Even though all climate projections are bias-
adjusted on the HYRAS training dataset, they still do not depict the real climate

Fig. 8 Model performance, plausibility, and interpretability. a Optimized model evaluation in the past for the test set (2012–2016). b Model output under
an artificial extreme climate scenario in the past. c SHAP Summary plot.

Fig. 7 Overall model performance and data splitting scheme. a Model performance of all models for the test-set (2012–2016). b Time series splitting
scheme for optimization (upper) and retraining (lower).
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development for individual years (also historically), which can cause a bias between
the end of historical data records and the start of our simulations. We, therefore,
investigated the trend of the aforementioned quantities between the start of the
simulation and the end in 2100 and did not directly consider the end of the
historical records. We examined each groundwater level development using
Mann–Kendall linear trend test58 and derived the relative development in percent
from a linear fit using Theil–Sen slope. For Mann–Kendall test we considered a
trend significant for p < 0.05, and we further provide upper and lower 95% con-
fidence bounds of the Theil–Sen slopes59 for all significant trends.

Data availability
The original groundwater level data are available free of charge from the respective local
authorities: LUBW, LfU Bavaria, LfU Brandenburg, HLNUG, LUNG Mecklenburg-
Western Pomerania, NLWKN, LANUV North Rhine-Westphalia, LfU Rhineland-
Palatinate, SMUL, LHW Saxony-Anhalt, and LLUR Schleswig-Holstein. We published
the processed groundwater level data including interpolated values based on the previous
knowledge41 with the kind permission of these local authorities: https://doi.org/10.5281/
zenodo.4683879. Climate projection data are available on request and free of charge for
non-commercial and academic purposes from the German Meteorological
Service (DWD).

Code availability
The code necessary to reproduce our results is available on GitHub.60
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